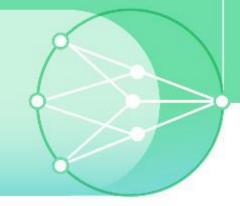
Flow on Benefits of Microgrids in Agriculture

Andrew Chamberlin

20 September 2023


The flow on benefits of microgrids for agriculture

Our Members

Canegrowers

Cotton Australia

Queensland Fruit & Vegetable Growers

Nursery & Garden Industry Queensland

eastAUSmilk

Australian Cane Farmers Association

Queensland United Egg Producers

Turf Queensland

Queensland Chicken Meat Council

Pork Queensland

Bundaberg Regional Irrigators Group

Burdekin River Irrigation Area

Central Downs Irrigators Ltd

Fairburn Irrigation Network

Mallawa Irrigation

Pioneer Valley Water Co-operative Ltd

Theodore Water Pty Ltd

Eton Irrigation

Queensland Oyster Growers Association

Lockyer Water Users Forum

About QFF

The Queensland Farmers' Federation (QFF) is the united voice of agriculture in Queensland.

- Member-based organisation representing the interests of peak agriculture industry organisations (state and national).
- Collectively, we represent 13,000 primary producers.
- We work with the government of the day on behalf of the agriculture sector, farmers and the community to build a strong future Queensland agriculture.
- We develop policy and advocate on behalf of our industries.

Who we represent

- Cotton
- Horticulture
- Nursery and garden
- Dairy
- Cane

- Poultry
- Pork
- Intensive animal industries
- Irrigators

The QFF team are a group of highly skilled and committed professionals with technical expertise across the priority areas of our members.

We deliver:

- cutting-edge
 projects to support
 innovative,
 sustainable practices
 on-farm
- science-based and future focused in our policy development

Our Policy and Projects Work

Water

Agriculture productivity

Land use planning, regional development and co-existence

Energy

Animal welfare

Environmental sustainability and natural resource management

Biosecurity

Waste management, resource recovery

Workforce planning, including education and training and workplace health and safety

Farm business planning, including risk management and resilience building

microgrids for agriculture

Project Team

Constructive Energy

Ashley Bland

Tom Griffiths

Reaqua & Farm Renewables Consulting

Karin Stark

Cotton Australia

Jennifer Brown

QFF

Madison Sturges

Andrew Chamberlin

Why Microgrids On Farm?

Agriculture and Energy

Energy productivity in Ag: irrigation, processing, cooling/heating, treatment systems, packing sheds, etc.

Efficiency gives way to asset optimization and energy sharing (between meters and consumers)

Reliability and business resilience

Lack of 'fit for purpose' utility products and services, energy independence

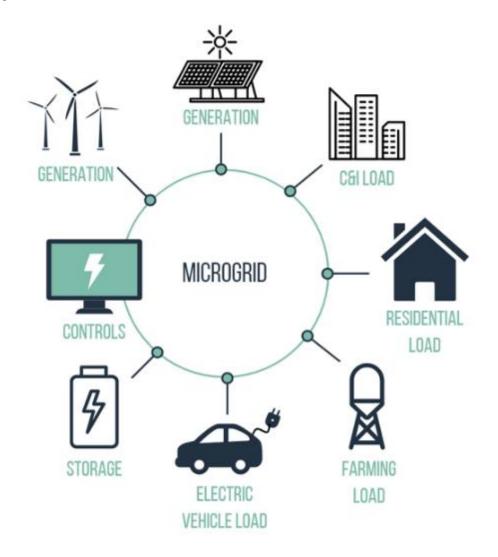
Commodity market pressures to decarbonise

Why Microgrids On Farm?

Regional Grids

- Aging infrastructure in regions
- Expensive network cost/consumer, transmission efficiency challenges
- Grid reliability and resilience challenges
- C&I/Ag consumer grid defection presents equity issues for remaining grid connected regional consumers
- Local benefit and other coexistence challenges from utility scale RE in regions

A balance between regional consumer benefit and network service affordability is critical



Defining Microgrids

A microgrid is a physical energy grid generating and distributing electricity within its geographic footprint.

It can:

- Blend DERs to form a selfcontained system
- Use renewable and nonrenewable sources
- Connect to and disconnect from the central grid, on demand
- Enable energy sharing and trading with local and national energy markets
- Help modernise central grids locally, with enabling regulation and technology

Evaluating Ag Microgrid Archetypes

Choosing the Case Studies

The feasibility study identified 4 archetypes that represented commonly occurring grid and potential microgrid orientations.

Case studies were selected across varying geographies, commodities, and consumption profiles.

The selection criteria ensured archetypes were robustly tested.

Location	Archetype	Commodity
Pokolbin, NSW	Single Enterprise	Winery
St George, QLD	Edge of Grid	Cotton
Mackay, QLD	Large Microgrid	Sugar Cane
Wee Waa, NSW	Anchor-Host/Hybrid	Mixed Horticulture

Criteria	Description
Practical	Is a microgrid or similar physically possible?
Replicable	Is the farm profile commonly occurring?
Impact	What is the potential value of the investment?
Partnership	Is there opportunity to share benefit off farm?

Value Drivers

The feasibility study expressed viability as an energy price cheaper than existing energy costs.

These income levers were considered.

Income Levers	Accessibility
Self-consumption	Currently accessible
Export/Feed in Tariffs	Varying accessibility
Ancillary/Wholesale Markets	Limited accessibility
Upgrade Deferral Payments	Very limited/no accessibility
Local Energy Markets/PPAs	Very limited/no accessibility

Simple project finance outputs didn't always capture the full value of a microgrid to the farmer.

Stacking the below value drivers considerably altered the perception of viability and risk appetite.

Value Driver	Pokolbin	Wee Waa	Mackay	St George	
Affordability	/	~	✓	~	
Resilience	/	/	/	✓	
Independence				✓	
Decarbonisation	/	/	~	~	
Local Sharing	/	/	/	✓	

Feasibility Results

	POKOLBIN	ST GEORGE	MACKAY	WEE WAA	
TYPE	Grid Connected Microgrid	Grid Connected Microgrid	Virtual Microgrid	Grid Connected Microgrid	
CORE SYSTEM COMPONENTS	220kW solar PV 269kWh battery Monitoring + controls	500kW solar PV 1.01MWh battery Monitoring + controls	650kW solar PV 2.128MWh battery Monitoring + controls	800kW solar PV 1.68MWh battery Monitoring + controls	
CAPITAL COST	\$432,040 Batt \$179,040 (\$600/kWh) PV \$1.15/W	\$1,234,500 Batt \$559,500 (\$500/kWh) PV \$1.35/W	\$2,154,750 Batt \$1,212,250 (\$500/kWh) PV \$1.45/W	\$2,012,500 Batt \$932,500 (\$500/kWh) PV \$1.35/W	
12 & 25 YEAR NPV	-\$90,049 & \$51,143	\$338,093 & \$1,813,116	-\$19,100 & \$1,466,122	-\$283,500 & \$1,882,642	

Sensitivity Analysis

	POKOLBIN	ST GEORGE	MACKAY	WEE WAA	
ТҮРЕ	Grid Connected Microgrid	Grid Connected Microgrid	Virtual Microgrid	Grid Connected Microgrid	
% OF BASE CASE CAPEX	80%	75%	-	85%	
12 & 25 YEAR NPV	\$12,375 & \$166,983	\$22,222 & \$1,555,285	Payback in 8-9 years, modest surplus	\$108,252 & \$1,612,942	

Comparing 'Lowest Cost' Interventions

Microgrid benefits may be marginal as a capital-intensive intervention.

Other interventions include:

- Efficiency interventions
- Resolving substation underutilisation with ag productivity tariffs
- Offering net metering retail products

The value of the intervention depends on the farmer's value drivers for energy productivity.

Solution	Affordability	Reliability	Asset Utilisation	Decarbonise	Back-up Energy	Local Grid Benefit
Meter consolidation	No	No	Maybe	No	No	No
Virtual net metering	Yes	No	Maybe	No	No	No
DER installations	Yes	Yes	Yes	Yes	Yes	No
Local VPP	Yes	Yes	Yes	Maybe	Yes	Yes
Local Energy Market	Yes	Yes	Yes	Yes	Yes	Yes
Microgrid	Yes	Yes	Yes	Yes	Yes	Yes

Challenges to De-risking Microgrids

Technical

- Regional connectivity and smart tech
- Smart meter install costs
- Local access to skills for maintenance
- Variable market maturity
- Brownfield solutions are expensive/tricky, resolve virtually
- Systems serving >80% of energy are too expensive, solve behind the meter with modularity

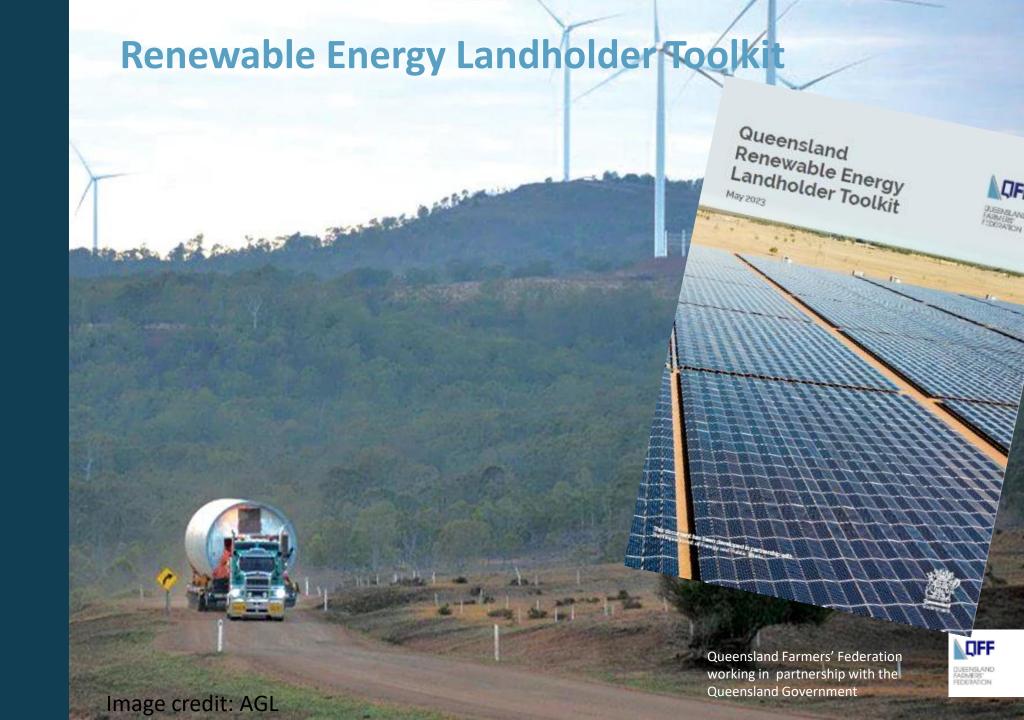
Regulatory/Market

- Connection process disadvantages smallmid scale projects
- Regulatory innovation is slow
- Energy market uncertainty creates financial risk to microgrid models
- Market pricing mechanisms penalise or exclude CERs
- Regional REZs lack inclusion of CERs
- Monopolised networks impair power of choice and democratisation of energy
- Utilities lack fit for purpose/innovative products and services
- Energy data regulation need improvement

Opportunities for De-risking Microgrids

Agricultural

- Edge of Grid: obvious and easy
- Single Enterprise: system size or land availability dependent, agrivoltaics or VPP/collective system alternatives
- Large Microgrid: possible ag clusters include
 - Single commodity regions
 - Co-located supply chains
 - Co-located complementary commodities
- Anchor/Hybrid: local community energy anchor/off taker partnership
- On farm hydrogen/fertiliser production
- Local grid resilience services


Regulatory/Markets

- Regulatory sandbox to speed up innovation
- Support for pilot demonstrations and trials
- Revise of use of network and cost reflective pricing structures e.g. LUOs, etc.
- Standards and processes that support dynamic grid participation for non-utility entities
- Enable equitable and democratised energy access
 for regional consumers
- Transition the NEM to the 'internet of energy'

Networks

- Investment deferrals by integrating CERs for local grid support, eg:
 - Emergency supply
 - Voltage/frequency support
 - Restart and fast dispatch
- Regional grid modernisation enabled by CER tech integration
- Use of network efficiencies via local use of CERs in regions
- Reduce defection in regions with CER integration or energy productivity products and services

Renewable Energy Landholder Toolkit

Includes:

- a checklist with relevant information for the landholder
- a guideline with suggested actions
- considerations for dealing with project proponents
- case studies
- Resources from consultation phase: workshops/webinars and blogs

Renewable Energy Landholder Toolkit

Help Queensland landholders to understand:

- The value of their site to renewable energy proponents
- Relevant legislation
- Different stages of project development
- How to prepare for the negotiations and development
- What information and advice is available to help.

Queensland Farmers' Federation working in partnership with the Department of Energy and Public Works

Energy Innovation Work at QFF Current Projects

- Apply for ARENA's RAMPP funding for ag microgrid pilots
- Localised Energy in the Regions: Market research on emerging market for CERs in regional QLD
- Digital Agriculture
- Energy efficiency and carbon audits for members

Thank you!

Get in touch!

Email: andrew@qff.org.au

Phone: 0412 242 316

Follow us @QldFarmers

